The effect of small elongations on the electronic and optical signatures in InAs nanocrystal quantum dots.

نویسندگان

  • T Puangmali
  • Marco Califano
  • P Harrison
چکیده

We present a detailed theoretical investigation of the electronic structure and optical properties of InAs nanocrystals at the transition from spheres to rods. Using a semiempirical pseudopotential approach, we predict that, despite the qualitative similarity of both intra- and inter-band optical spectra, for NCs with R>15 Å even slight elongations should result in shifts of the order of hundreds of meV in the spacings between STM peaks measured in the positive bias regime, in the position of the intra-band absorption peaks associated with transitions within the conduction band and in the separation between the first and the fifth peak in PLE experiments. Our results show that, based on the spectroscopic data, it should be possible to discriminate between spherical and elongated NCs with aspect ratios of length over diameter as small as 1.2. Indeed our results suggest that many nominally spherical experimental samples contained a large fraction of slightly elongated structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-155: Studies of Cytotoxic Effects ofCdSe Quantum Dots on Fetal Development Testis and Epididymis in Albino Mice

Background: Quantum dots (QDs) are among the most promising items in the nanomedicine toolbox. These nanocrystal fluorophores have several potential medical applications including nanodiagnostics, imaging, targeted drug delivery, Nevertheless, in vivo cytotoxicity of these nanoparticles has not been highly considered. For this reason, the cytotoxic effects of CdSe QDs on testis and epididymis e...

متن کامل

Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy

In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...

متن کامل

Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy

In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...

متن کامل

Synthesis and Optical Study of CdZnTe Quantum Dots

The comparison of growth processes and fluorescent properties of CdZnTe semiconductor quantum dots that are synthesized in different concentrations of Zn2+ in water are discussed in this paper. The samples are characterized through absorbtion (UV) and photoluminescence spectra (PL). The results show that when the reaction time is prolonged, the absorption peak and fluorescent emission peak pres...

متن کامل

Synthesis and Optical Study of CdZnTe Quantum Dots

The comparison of growth processes and fluorescent properties of CdZnTe semiconductor quantum dots that are synthesized in different concentrations of Zn2+ in water are discussed in this paper. The samples are characterized through absorbtion (UV) and photoluminescence spectra (PL). The results show that when the reaction time is prolonged, the absorption peak and fluorescent emission peak pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 21 14  شماره 

صفحات  -

تاریخ انتشار 2009